
IEEE TRANSACTIONS ON BIG DATA, VOL. XX, NO. X, JUNE 2016 1

Spatio-Temporal Features in Large Irregular
Data: Blob-Filaments in Fusion Plasma

Lingfei Wu, Kesheng Wu, Alex Sim, Michael Churchill,
Jong Y. Choi, Andreas Stathopoulos, CS Chang, and Scott Klasky

Abstract—This work was originally motivated the need to identify and track blob filaments, a feature often associated with instability in
magnetically confined fusion plasma. Understanding and mitigating such instability would improve fusion reactors and make fusion a
truly inexhaustible source of clean energy. Similar spatio-temporal features are important in many other applications, for example,
ignition kernels in combustion and tumor cells in a medical image. This work presents an approach for extracting these features by
dividing the overall task into three steps: local identification of feature cells, grouping feature cells into extended feature, and tracking
movement of feature through overlapping in space. Through our extensive work in parallelization, we demonstrate that this approach
can effectively make use of a large number of compute nodes to detect and track blobs in fusion plasma. On a set of 4.3TB data, we
observed linear speedup on 1024 processes and completed blob detection in less than three milliseconds using Edison, a Cray XC30
system at NERSC.

Index Terms—Big data analytics, spatio-temporal feature, irregular mesh, region outlier, blob detection and tracking, fusion plasma.

F

1 INTRODUCTION

AWide variety of “big data” such as simulations of
disel combustion and images of tissue from biopsy,

are spatiotemporal in nature [1], [2]. When analyzing these
data sets, a common task is to find coherent structure in
space and time, for example, ignition kernels in combustion,
and cancerous cells in medical images. There are many
possible approaches to identify such a feature based on the
application requirements [3], [4], [5], [6]. However, when
faced with tight time constraints many of these techniques
are too slow to produce an satisfactory answer.

Our work was originally motivated by the need to detect
spatio-temporal feature associated with the instability in
fusion plasma. Magnetic confined fusion has the potential
to be an inexhaustible source of clean energy; and billions
of dollars have been invested in developing fusion reactors,
like the International Thermonuclear Experimental Reactor
(ITER) [7]. However, steady-state plasma confinement is
often interrupted by blob filaments driven by the edge
turbulence. A blob filament (or blob) is a magnetic-field-
aligned plasma structure that appears near the edge of the
confined plasma, and has significantly higher density and
temperature than the surrounding plasma [8]. Blobs can
also be considered as outliers because they are rare events

• L. Wu and A. Stathopoulos are with the Department of Computer Science,
College of William and Mary, Williamsburg, VA, 23185.
E-mail: {lfwu,andreas}@cs.wm.edu

• K. Wu and A. Sim are with Lawrence Berkeley National laboratory,
Berkeley, CA, 94720.
E-mail: {KWu,ASim}@lbl.gov

• M. Churchill and C. Chang are with Princeton Plasma Physics Labora-
tory, Princeton, NJ, 08536.
E-mail: rmchurch@mit.edu, cschang@pppl.gov

• J. Choi and S. Klasky are with Oak Ridge National Laboratory, Oak Ridge,
TN, 37831.
E-mail: {choij,klasky}@ornl.gov

Manuscript received in May 4th, 2015. Revised manuscript received in April
18th, 2016.

that convect filaments of plasma outwards towards the
containment wall, causing substantial heat loss, degradation
of the magnetic confinement, and erosion of the containment
wall. By identifying and tracking these blob filaments from
fusion plasma data streams, physicists can improve their
understanding of the dynamics and interactions of such
coherent structures (blobs) with edge turbulence.

Fusion experiments and simulations could easily pro-
duce many terabytes per second; and features such as blobs
have to be detected in milliseconds in order for the control
system to have a chance to take mitigating actions. Though
there are many well known feature extraction methods for
detecting outliers, but they often have some shortcomings.
Classical multi-dimensional outlier detection techniques are
designed to detect global outliers. However, these tech-
niques do not distinguish between non-spatial attributes
and spatial attributes and do not consider apriori informa-
tion about the statistical distribution of the data [9]. Since
spatio-temporal data types have unique characteristics and
their relations are more complicated than ordinary data,
dedicated outlier detection techniques are typically required
to examine anomalies in data across space and time [5].
In this work, we propose an approach for detecting and
tracking spatio-temporal features such as blobs by breaking
down the process into three steps: (1) finding cells that
satisfying application specific requirements, (2) group cells
into spatial features, and (3) tracking features by the amount
of overlap in space. By varying the first step, this procedure
could be applying to different applications. Earlier, this
approach was applied to data from regular meshes [2],
[10]. In this work, we will demonstrated that it can also be
effectively applied to irregular mesh data.

This work addresses several challenges exemplified by
the detection of blobs in fusion plasma. First off, fusion
experiments and numerical simulations can easily generate
massive amounts of data per run. During a magnetic fusion



IEEE TRANSACTIONS ON BIG DATA, VOL. XX, NO. X, JUNE 2016 2

Data Generation 
(Experiments or 
Simulations)

Data Hub

Blob Detection

Blob Detection

Blob Detection

Data Stream

Fig. 1: A real-time data analysis frame for finding blob-
filaments in fusion plasma data streams

device experiment (or ”shot”), terabytes of data are gen-
erated over short time periods (on the order of hundreds
of seconds). In the XGC1 fusion simulation [11], [12], a
few tens of terabytes can be generated per second. Timely
access to this amount of data can already be a challenge [13],
[14], but analyzing all this data in real time is impractical.
Currently, there are three types of analyses in most of
fusion experiments: in-shot-analysis, between-shot-analysis,
and post-run-analysis. All existing blob detection methods
address post-run-analysis, but in this work, we focus on
the more challenging first two cases to provide a real-time
analysis so that scientists can monitor the progress of fusion
experiments. Figure 1 presents a real-time analysis frame
for finding blob-filaments in fusion plasma data streams. To
perform this data analysis in real time, we utilize effectively
modern supercomputers to address the high volume and
velocity challenges arising from fusion plasma big data.

This work has been integrated into the International
Collaboration Framework for Extreme Scale Experiments
(ICEE), a wide-area in-transit data analysis framework for
near real-time scientific applications [15]. ICEE takes advan-
tage of an efficient IO solution ADIOS [16], and a cutting-
edge indexing solution FastBit [10], to design and construct
a real-time remote data processing framework over wide-
area networks for international collaborations such as ITER.
In this system, a blob detection algorithm is used to monitor
the health of fusion experiments at the Korea Supercon-
ducting Tokamak Advanced Research (KSTAR). However,
existing data analysis approaches are often single-threaded,
only for post-run analysis, and take a long time to produce
results. Also, compared to the simulation data, the resolu-
tion of the raw camera data may be coarse, but interesting
features can still be identified after normalization. In order
to meet real-time feedback requirement, we develop a real-
time blob detection method, which can leverage in-situ raw
data in the ICEE server and find blob-filaments efficiently
during fusion experiments. Our blob detection algorithm
is not limited to KSTAR only, and can be applied to other
fusion experiments and numerical simulations.

In this research, we apply the three-step approach to
detect and track a type of outlier known as the fusion
blobs with the goal of achieve millisecond response time
on terabytes of data. With this response space, it is possible
for the control system of the magnetic confinement fusion
reactor to implement mitigating strategies in real-time. To
the best of our knowledge, this is the first time a blob de-
tection method could satisfy the millisecond time requirement.
Additional contributions of this work include:

• We illustrate how to adopt the three-step approach to
detect and track fusion blob as an example of spatial-
temporal feature on an irregular mesh.

• We propose a two-phase region outlier detection
method for finding blob-filaments. In the first phase,
we apply a distribution-based outlier detection
scheme to identify blob candidate points. In the
second phase, we adopt a fast two-pass connected
component labeling (CCL) algorithm from [17] to find
different region outliers on an irregular mesh.

• We develop a high-performance blob detection ap-
proach to meet real-time feedback requirements by
exploiting many-core architectures in a large cluster
system.

• We propose a scheme to efficiently track the move-
ment of region outliers by linking the centers of the
region outlier over consecutive frames.

• We have implemented our blob detection algorithm
with hybrid MPI/OpenMP, and demonstrated the
effectiveness and efficiency of our implementation
with a set of data from the XGC1 fusion simula-
tions. Our tests show that we can achieve linear time
speedup and complete blob detection in two or three
milliseconds using a cluster at NERSC. In addition,
we demonstrate that our method is more robust
than recently developed state-of-the-art blob detec-
tion methods in [18], [19].

The rest of paper is organized as follows. In Section
II, we give the problem formulation of the blob detection
and discuss related work. In Section III we describe in
detail our three-step approach consisting of a two-phase
region outlier detection algorithm and a tracking scheme
for identifying and tracking blobs. We then present a real-
time blob detection approach by leveraging MPI/OpenMP
parallelization in a large cluster in Section IV. The blob
detection and tracking results and its real time evaluation
are shown in Section V. We conclude the paper, and give
our future plans in Section VI.

2 PROBLEM DEFINITION AND RELATED WORK

In this section, we introduce our problem definition and
discuss previous work related to our study. For related
work, we first discuss existing research work on outlier
detection, and then review previous work on blob detection
in fusion plasma domain.

2.1 Problem Definition
Extracting spatial-temporal features play an important role
in analyzing scientific and engineering applications, includ-
ing behavior recognition [20], bioinformatics [21], video
analysis c [22], and health informatics [23]. Depending on
the applications, mining spatial features in one time frame
and relationships among spatial objects in and across time
frames are extremely challenging tasks due to three reasons.
First, the extent and shape of a feature could be an important
indicator in determining its influence. However, due to
various data type (regular and irregular), it is not easy
to apply a generic approach for all applications. Second,
effectively incorporating the temporal information in the



IEEE TRANSACTIONS ON BIG DATA, VOL. XX, NO. X, JUNE 2016 3

Fig. 2: A contour plot of the local normalized density in the
region of interests in one time frame in fusion experiments
or numerical simulations. A cross-section of the torus is
called a poloidal plane. R and Z are cylindrical coordinates
and the major radius of the torus is denoted by R.

overall analysis is a necessity to uncover interesting up-
coming events. Finally, how to process very large data sets
in real time demands appropriately responding to extreme
scale computing and big data challenges. In this work, we
attack this problem by presenting a three-step approach
for detecting and tracking spatio-temporal features in the
context of blob-filament detection in fusion plasma.

The definition of a blob is varied in the literature de-
pending on fusion experiments or simulations as well as
available diagnostic information for measurements [8]. This
makes blob detection a challenging task. Figure 2 plots local
normalized density distribution in the regions of interest in
one time frame. We can observe that there are two reddish
spots located at the left portion of the figure, which are
associated with blob-filaments and are significantly different
from their surrounding neighbors. It is clear that a reddish
spot is not a single point but a group of connected points or a
region. Therefore, we formulate the blob detection problem
as a region outlier detection problem. Similar to the spatial
outlier [9], a region outlier is a group of spatial connected
objects whose non-spatial attribute values are significantly
different from those of other spatial surrounding objects in
its spatial neighborhood. Figure 2 shows blobs are region
outliers. The number of region outliers detected is deter-
mined by pre-defined criteria provided by domain experts.

The problem is to design an efficient and effective
approach to detect and track different shapes of region
outliers simultaneously in fusion plasma data streams. By
identifying and monitoring these blob-filaments (region
outliers), scientists can gain a better understanding about
this phenomena. In addition, a data stream is an ordered
sequence of data that arrives continuously and has to be
processed online. Due to the high arrival rate of data, the
blob detection must finish processing before the next data
chunk arrives [24]. Therefore, another critical problem is
to develop a high-performance blob detection approach in
order to meet the real-time requirements.

2.2 Outlier Detection
The problem of outlier detection has been extensively
studied and can be generally classified into four cate-
gories: distance-based, density-based, clustering-based, and
distribution-based approaches [3], [25].

Distance-based methods [26] use a distance metric to
measure the distances among data points. If the number
of data points within a certain distance from the given
point is less than pre-defined threshold, then this point is
determined as an outlier. This approach could be very useful
with accurate pre-defined threshold. However, it may not
be proper to use a simple threshold if different densities in
various regions of the data exhibit across space or time.

Density-based methods [27] assign a local outlier factor
(LOF) to each sample based on their local density. The LOF
determines the degree of outlierness, where samples with
high LOF value are identified as outliers. This approach
does not require any prior knowledge of underlying dis-
tribution of the data. However, it has a high computational
complexity since pair-wise distances have to be computed
to obtain each local density value.

Clustering-based methods [28] conduct clustering-based
techniques on the sample points of the data to characterize
the local data behavior. Since this method does not focus on
outlier detection, the outliers are produced as by-products
and it is not optimized for outlier detection.

Distribution-based methods [9] applies machine learning
techniques to estimate a probability distribution over the
data and develop a statistical test to detect outliers. These
methods use all dimensions to define a neighborhood for
comparison and typically do not distinguish non-spatial
attributes from spatial attributes.

In the context of data streams, a line of research has been
devoted to develop efficient outlier detection techniques
[24], [29], [30], [31], [32], [33]. But their main focus is to solve
the problem of event detection in sensor network [29], query
processing [30], [32], clustering [31], and graph outliers [33].
Therefore, these methods cannot be easily generalized to
region outlier detection problems. In addition, the problem
of blob detection presents a special challenge, because the
spatiotemporal attributes of the blob-filaments has to be
considered together to study their various characteristics
including speed, direction, movement, and size. More im-
portantly, these methods are mostly single-threaded which
cannot cope with real-time requirements in fusion plasma.

A number of distributed outlier detection methods have
also been studied in [29], [34], [35], [36], [37]. Most of
these methods are seeking an efficient way to parallelize
classical outlier detection methods such as distance-based
outliers [35], [37], distribution-based outliers [29], density-
based outliers [35], density-based outliers [36], and PCA-
based techniques [34]. However, there methods are not
generally applicable to region outlier detection and tracking.
In particular, in order to tackle high volume and velocity
challenges arising from fusion plasma big data, specialized
outlier detection scheme and suitable high performance
computing technique are demanded to complete blob de-
tection in the order of milliseconds.

In the first two steps of our proposed approach, we
apply distribution-based outlier detection to detect outlier
points by considering only non-spatial attributes and then



IEEE TRANSACTIONS ON BIG DATA, VOL. XX, NO. X, JUNE 2016 4

leverage fast CCL to construct the region outliers by taking
into account spatial-attributes. We choose distribution-based
outlier detection since it can solve the problem of finding
outliers efficiently if an accurate approximation of a data
distribution can be properly found [9], [29]. Normally the
distribution of the stream data may change over time [5].
However, this assumption may not hold in fusion experi-
ments since a fusion experiment lasts very short time period
from a few seconds to hundreds of seconds. Therefore, we
can perform exploratory data analysis to compute best fitted
distribution parameters offline and then build an accurate
online distribution model.

2.3 Blob Detection in Fusion Plasma

Independently, fusion blob detection problems have been
researched by the physics community in the context of co-
herent structures in fusion plasma [8]. Various post-run blob
detection methods have been proposed to identify and track
these structures, to study the impact of the size, movement
and dynamics of blobs. A plasma blob is most commonly
determined by some threshold, computed statistically in the
local plasma density signal [38], [39], [40]. However, the
exact criteria have varied from one experiment to another,
which reflects the intrinsic variability and complexity of the
blob structures. In [38], a conditional averaging approach is
applied to analyze spatio-temporal fluctuation data. When
the vorticity is larger than one standard deviation at some
time frame, a blob is considered to be detected by the probe.
In [39], the conditional averaging technique is also used to
study the evolution of the blob-filaments using Langmuir
probes and a fast camera.

Without using a conditional averaging technique, [40]
searches for blob structures can be done using local mea-
surements of the 2D density data obtained from a 2D probe
array. Identification of a blob is based on the choices of
several constraints such as the threshold intensity level, the
minimum distance of blob movement, and the maximum
allowed blob movement between successive frames. The
trajectories of the different blobs can be computed with
the blob centers based on identification results in each time
frame. The seminal work by Zweben, et. al. [40] was the first
attempt to take only individual time frame data into account
to detect blobs and track their movements, although the
process of identification of a blob was somewhat arbitrary
and oversimplified.

Due to the emergence of fast cameras and beam emission
spectroscopy in the last decade, the situations of insufficient
diagnostic access and limited spatial and temporal resolu-
tion have been greatly improved. In the context of computer
version, a number of methods have been developed to tackle
blob detection problem, which is aimed to detect points or
regions in the image that either brighter or darker than the
surrounding [41]. Among them, scale-space methods based
on the Laplacian of Gaussian [42], [43], [44] and Watershed
detection methods based on local extrema in the intensity
landscape [45] are two main classes of blob detectors. In
[46], Love and Kumath made the first attempt to apply an
image analysis using Watershed techniques for identifying
blobs in fusion plasma. The images are first processed to
remove the noise spikes, followed by further smoothing

using a Gaussian filter, and then identified by various image
segmentation techniques. However, due to noise and lack of
a ground truth image, this approach can be sensitive to the
setting of parameters, and it is hard to use generic method
for all images. In addition, the output from visualization is
not convenient to feed into other analysis [2]. The regions of
interest computed from this work can be more conveniently
fed into other analyses. For instance, one can compute blobs
in the regions of interest very quickly and transmit these
compact meta information over internet to remote domain
scientists for real-time analysis.

Recently, several researchers [18], [19], [47] have devel-
oped a blob-tracking algorithm that uses raw fast camera
data directly with GPI technique. In [18], [19], they lever-
age a contouring method, database techniques and image
analysis software to track the blob motion and changes
in the structure of blobs. After normalizing each frame
by an average frame created from roughly one thousand
frames around the target time frame, the resulting images
are contoured and the closed contours satisfying certain size
constraints are determined as blobs. Then, an ellipse is fitted
to the contour midway between the smallest level contours
and the peak. All information about blobs are added into
a SQL database for more data analysis. This method is
close to our approach but it can not be used for real-time
blob detection since they compute time-averaged intensity
to normalize the local intensity. Additionally, only closed
contours are treated as blobs, which may miss blobs at
the edges of the regions of interest. Finally, these methods
are still post-run-analysis, which cannot provide real-time
feedback in fusion experiments.

3 OUR PROPOSED APPROACH

Given a fusion data stream, which consists of a time or-
dered sequence of sample frames that arrive continuously
from fusion experiments or numerical simulations through
remote direct memory access protocols. Our data sets are
simulated electron density from the fusion simulation code
XGC1 [11], [12]. In the present data sets, simulation data is
captured every 2.5 microseconds for a total time window of
2.5 milliseconds. Each point si ∈ S in a time frame t has a
spatial attribute (r, z, t) which defines its location in a trian-
gulated measurement grid, and some non-spatial attributes
including all important plasma quantities such as electron
density ne(r, z, t) as well as connectivity information in a
poloidal plane. The spatial neighborhoods are defined for
each point from the connectivity database in a triangulated
grid. Formally, an region outlier responding to a blob is
defined as a spatial area in the regions of interest where
a subset Bi ⊆ S is a group of connected points si.

Our overall goal is to develop an approach to detect
and track spatial region outliers (blobs) over time using
a stream of fusion data. To achieve this, we break down
the process into three steps: (1) finding outlier points in the
region of interests, (2) group these outlier points as different
region outliers, and (3) tracking these regions outliers by
the overlapping in space. We address the first two steps
by presenting a two-phase approach, as shown in Figure
3. In the first phase, we apply a distribution-based outlier
detection algorithm to the fusion data stream in order to



IEEE TRANSACTIONS ON BIG DATA, VOL. XX, NO. X, JUNE 2016 5

Fusion data stream

Distribution-based outlier 
detection

CCL-based region outlier 
detection

Region outliers: 
Blobs

Outliers: (si, ne(ri, zi, t))

Fig. 3: Two-phase region outlier detection for finding blobs

R (m)
1 1.2 1.4 1.6 1.8 2 2.2 2.4

Z
 (

m
)

-1.5

-1

-0.5

0

0.5

1

1.5
Magnetic Fields in Poloidal Plane

Poloidal Plane
Region of Interests

(a) Regions of interest

2.25 2.26 2.27 2.28 2.29 2.3 2.31 2.32
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

R (m)

Z
 (

m
)

 

 

Reinfed 

Original

(b) Refined mesh

Fig. 4: An example of the regions of interest and the compar-
ison between refined and original triangular mesh vertices
in the R (radial) direction and the Z (poloidal) direction.

detect outlier points which have significantly higher non-
spatial attributes than other points. The outputs of this step
are tuples (si, ne(ri, zi, t)), the 2D spatial attributes, and
non-spatial attributes such as electron density. These tuples,
as well as connectivity information, are used as input for the
second phase, where region outlier are detected by applying
a fast CCL [17] to efficiently find different connected compo-
nents on the triangular mesh. The outputs of the CCL-based
region outlier detection algorithm are a set of connected
components with outlier points inside, which are associated
with blobs if some criteria are satisfied. We address the last
step by proposing an efficient blob tracking algorithm by
leveraging cues from changes of blobs area and distance
of center of blobs. Note that, by varying the first step, this
procedure could be applying to different applications.

In the following section, we describe the proposed two-
phase region outlier detection in detail.

3.1 Distribution-Based Outlier detection
The main task of this phase is to perform efficient outlier
detection to determine outlier points which form the region
outliers associated with blobs. To facilitate this goal, we pro-
pose a novel distribution-based outlier detection algorithm
based on the electron density with various criteria for fusion
plasma data streams. We separate spatial attributes from
non-spatial attributes and consider the statistical distribu-
tion of the non-spatial attributes to develop a test based on
distribution properties, since it is more suitable for detecting
spatial outliers [9]. As claimed in [29], it is very efficient to

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7
x 10

4 Density distribution fitting using 50 bins

Normalized electron density (n_e/n_e0)

N
u

m
b

e
r 

o
f 

p
o

in
ts

 i
n

 e
a

c
h

 b
in

(a) Extreme Value

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7
x 10

4 Density distribution fitting using 50 bins

Normalized electron density (n_e/n_e0)

N
u

m
b

e
r 

o
f 

p
o

in
ts

 i
n

 e
a

c
h

 b
in

(b) Log Normal

Fig. 5: An example of exploratory data analysis to analyze
the underlying distribution of the local normalized density
over all poloidal planes and time frames.

find outliers by using a data distribution approximation if
we estimate the underlying distribution of data accurately.
Values for various criteria are determined by domain ex-
perts or subjectively by examining the resulting plotting and
adjusting them until satisfied.

In the proposed outlier detection we firstly preprocess
the sample frame to compute needed quantities in the region
of interests, as shown in Figure 4a. Then it is analyzed
by normalizing the total electron density ne(r, z, t) (which
includes fluctuations) with respect to the initial background
electron density, ne(r, z, 1) (if using real diagnostic data
from, e.g. GPI, actual emission intensity I(r, z, t) would
be used instead of electron density). Note that using the
initial time frame as the benchmark is an important factor
to achieve real-time blob detection. The normalized elec-
tron density in the subsequent time frames can be easily
computed, especially compared to the time-average electron
density with a long time interval [19].

Algorithm 1 Triangular mesh refinement algorithm

Input/output:
triGrid: connectivity array of the triangular mesh
(r, z): spatial coordinate of each point
ne: normalized electron density of each point

1: Compute unique edges E and indices vector IE by
sorting and removing duplicates based on triGrid

2: Compute spatial coordinate of each new vertices in the
middle of E based on (r, z)

3: Compute electron density of each new vertices on E by
performing linear interpolation based on ne

4: Compute indices for each new vertices by adding vector
index IE with the number of original points

5: Compute a new triangular mesh by assigning appropri-
ate indices from each new and old vertices

To obtain meaningful region outliers using the CCL
method, it is necessary to have fine grained connectivity
information. This particular simulation mesh has coarse
vertical resolution, so resolution enhancement techniques
are applied to generate a higher resolution triangular mesh
based on the original triangulated mesh. As shown in Algo-
rithm 1, the resulting triangular mesh is refined to achieve
four times better granularity. We split each original triangle
into four smaller ones by linking three middle points of
the original mesh edges in each triangle. The corresponding
density of generated vertices can be obtained using linear



IEEE TRANSACTIONS ON BIG DATA, VOL. XX, NO. X, JUNE 2016 6

interpolation of the original triangular mesh. This step can
be applied recursively until the satisfactory resolution of the
triangular mesh is computed. Figure 4b shows the resulting
triangular mesh vertices after applying the triangular mesh
refinement algorithm once.

In order to apply an appropriate predefined quantile in
two-phase distribution-based outlier detection, it is advised
to perform exploratory data analysis to exploit main charac-
teristics of the data sets. Figure 5 reveals that extreme value
distribution and log normal distribution are fitted best with
one of our sample data sets (after comparing over sixteen
different common distributions). After analyzing the under-
lying distribution, a novel outlier detection is performed to
determine outlier points in the regions of interest. The basic
idea of the proposed two-step outlier detection is motivated
from the observations that there are relatively high density
areas (a half banded ellipse area with cyan color) in the edge
and several significantly high density small regions (a few
small areas with reddish yellow color) in these relatively
high density areas, as shown in Figure 2. The proposed
outlier detection method extends the previous approach
that applies statistical detection with conditional averaging
intensity value [38], [39], and applies more intelligent outlier
detection with only considering individual time frame data.
Compared to traditional single threshold segmentation ap-
proach, our approach is more generic, flexible and easier to
tune a satisfactory result.

In the first step, the standard deviation σ and the ex-
pected value µ are computed over all sixteen poloidal planes
in one time frame. Using the best fitted distribution, we
apply first step outlier detection to identify the relative high
density areas with a specified predefined quantile:

N(ri, zi, t)− µ > α ∗ σ, ∀(ri, zi) ∈ Γ (1)

whereN is the normalized electron density, α is the multiple
of σ associated to the specified predefined quantile and Γ
is the domain in the region of interests. Once the relative
high density regions are determined, we compute another
standard deviation σ2 and the expected value µ2 in these
areas. Then we employ second step outlier detection to
identify the outlier points in the relative high density areas
with an appropriately chosen predefined quantile:

N(ri, zi, t)− µ2 > β ∗ σ2,∀(ri, zi) ∈ Γ2 (2)

where β is the multiple of σ2 associated to the judiciously
chosen confidence level and Γ2 is the domain of blob can-
didates. In practice, α and β can be chosen to be same or
different, depending on the characteristics of blob-filaments.
In our experience, the α value is generally greater than β
since the standard deviation σ over the region of interests
is much smaller than the standard deviation σ2 from the
relative high density areas.

However, two-step outlier detection alone cannot be
used to distinguish the blob candidates since identified blob
candidates may actually have small density, which does not
satisfy traditional definition of blobs. Therefore, the density
of the mesh points in the outlier points smaller than a
certain minimum absolute value criterion need to be filtered
out. On the other hand, it is also possible that the middle
areas between surrounding plasmas and outlier points have
density higher than the given minimum absolute value

criterion. Thus, we also apply a minimum relative value
criterion to remove these unwanted points. To combine
these two rules together, we have a more robust and flexible
criterion:

N(ri, zi, t) > max(dma, (dmr ∗ µ2)),∀(ri, zi) ∈ Γ3 (3)

where dma and dmr are minimum absolute value and min-
imum relative value respectively, and Γ3 is the domain of
good blob candidates.

3.2 CCL-Based Region Outlier Detection

The main task of the second phase is to apply an efficient
connected component labeling algorithm adopted from [17]
on a refined triangular mesh to find different blob candi-
date components. A connected component labeling algo-
rithm generally considers the problem of labeling binary 2D
images with either 4-connectedness or 8-connectedness. It
performs an efficient scanning technique, and fills the label
array labels so that the neighboring object pixels have the
same label. Wu [17] presents an efficient two-pass label-
ing algorithm that is much faster than other state-of-the-
art methods and theoretically optimal. However, since we
process a refined triangular mesh rather than the traditional
2D images, we have modified their CCL algorithm to take
the special features of a triangular mesh into account. As
shown in Algorithm 2, each triangle is scanned first rather
than a point. Since we know the three vertices in a triangle
are connected, we can reduce unnecessary memory accesses
once any vertex in a triangle is found to be connected with
another vertex in a different triangle. Then we compute the
current minimum parent label in this triangle, and assign
each vertex a parent label if its label has already filled or a
label if its label has not initialized yet. If all three vertices
in a triangle are scanned for the first time, then a new
label number is issued and assigned to their labels and the
associated parent label. After the label array is filled full,
we need flatten the union and find tree. Finally, a second
pass is performed to correct labels in the label array, and all
blob candidates components are found. Note that to perform
efficient union-find operations, the union-find data structure
is implemented with a single array as suggested in [17].

After all blob candidates are determined, a blob is
claimed to be found if the median of a blob candidate
component satisfies a certain minimum absolute median
value criterion. The reason we are setting this constraint to
select the blobs is that the minimum value criterion has to
be a reasonably small value in order to produce more blob
candidate components. It is possible that if the minimum
absolute median value criterion is too large, it may also
remove the blobs. On the other hand, it is also possible if this
value is too small, it does not have effect on filtering out un-
wanted components. Therefore, with the same philosophy
of measurement, a minimum relative median value criterion
is also applied to determine the blobs. However, in order to
protect the blobs from being removed due to the extremely
large mean value µ2, we also set the maximum absolute
median value criterion to limit the power of minimum



IEEE TRANSACTIONS ON BIG DATA, VOL. XX, NO. X, JUNE 2016 7

Algorithm 2 Connected component labeling algorithm on
triangular mesh to find various blob candidates components

Input:
triGrid: connectivity array of the triangular mesh

Output:
Bc: Region structure of each blob candidate

1: Initialize label, parentLabel, and labnum
2: for Scanning each triangle until the end of triGrid do
3: if label of three vertices are all zero then
4: Assign a new labnum to all three vertices
5: Update label and parentLabel with labnum
6: else
7: Find the minimum parentLabel of all three vertices
8: Update their label and parentLabel with this value
9: end if

10: end for
11: for Scanning until the end of parentLabel do
12: Update parentLabel by flattening union-find tree
13: end for
14: for Scanning until the end of Label do
15: Update Label with latest parentLabel
16: end for
17: Find each Bc of points with same parentLabel

relative median value criterion. We unify these three rules
to be one:

N(ri, zi, t) > max(d̂ma,min((d̂mr ∗ µ2), d̂xa)),

∀(ri, zi) ∈ Γ4 (4)

where d̂ma, d̂mr and d̂xa are minimum absolute and rela-
tive median values and maximum absolute median value
respectively and Γ4 is the domain of blobs.

3.3 Tracking Region Outliers
The objective of the third step is to track the direction and
speed of the detected blobs over time. The blob tracking
algorithm has to cope with the problem of tracking multiple
region outliers simultaneously even when the blobs merge
together or split into separated ones. On the other hand, the
blob tracking method should be simple and efficient to meet
real-time requirements. To achieve this goal, we propose an
efficient blob tracking algorithm by leveraging cues from
changes of blobs area and distance of center of blobs. We
compute the correspondence between previously tracked
blobs and currently detected blobs, and then recover the
trajectories of the tracked blobs.

To identify the location center of detected blob, we com-
pute the density-weighted average of the spatial coordinates
of each point inside a blob.

(rc, zc) =
1

M

n∑
i=1

(r, z)ne (5)

where M is summation of ne of all points in a blob. The
density-weighted average is used to better capture the cen-
ter of density of a blob. We track the movement of these
detected blobs by linking the centers in consecutive time
frames. In order to obtain the boundary of region outliers
(blobs), we compute the convex hull [48] of a set of points

in a blob. The area of a blob is computed by counting the
number of points in a blob.

Algorithm 3 Efficient blob tracking algorithm

Input:
B: Current detected blobs
T : Previous blob tracks

Output:
T : Updated blob tracks with B appended

1: Initialize hull, cen, and area
2: hull = getBoundary(B)
3: cen = getCenter(B)
4: area = getArea(B)
5: for Scanning until the end of B do
6: cenDis = getCenterDis(B,T )
7: areaDif = getAreaDif(B,T )
8: if cenDis ≤ maxJump ∧ areaDif ≤ maxDif then
9: Find a blob track T with smallest cenDis

10: Append current blob into this blob track T
11: end if
12: end for
13: Update T with hull, cen, area, and computed speed

As shown in Algorithm 3, the input parameters are
current detected blobs and the previous blob tracks. The
data structure of a blob track is composed of the track ID,
the length of track, the area of previous blob, the time-
stamps, the center points, the boundary points, and the
velocity. There are two heuristics to verify whether a blob
is associated with an existing blob track. The first heuristic
is based on the fact that the area of a blob between consec-
utive time frames cannot decrease or increase significantly.
The second heuristic takes into account the distance of the
centers of a blob does not change dramatically over very
short time period (microseconds). The proper thresholds
for these two heuristics are provided by domain experts.
Since blobs can appear, disappear, merge together or split,
a greedy scheme is applied to find the best matching pair
of blob and track based on closest distance of the centers
of current detected blob and the latest blob in a blob track.
Based on computed correspondence between a blob track
and the currently detected blobs, existing blob tracks are
automatically processed through corresponding operations
such as adding a blob into a track, creating a new track,
and a track ending. If the length of a track is smaller than
3 consecutive time frames, the track will be treated an
anomaly and deleted due to errors in data or inappropriate
blob detection thresholds. The speed and direction of the
blobs can thus be computed from two consecutive center
points. Finally, we can recover the trajectories of the tracked
blobs by monitoring the movement of blob centers.

4 A REAL-TIME BLOB DETECTION APPROACH

Existing blob detection approaches cannot tackle the two
challenges of the large amount of data produced in a shot
and the real-time requirement. In addition, existing data
analysis approaches are often operated in a single thread,
only for post-run analysis and often take a few hours to gen-
erate the results [49]. In order to meet the real-time feedback
requirement, we address these challenges by developing



IEEE TRANSACTIONS ON BIG DATA, VOL. XX, NO. X, JUNE 2016 8

Thread 

…	
  	
  	
  	
  T1	
   	
  	
  	
  T2	
   	
  	
  	
  Tm	
   …	
  	
  	
  	
  T1	
   	
  	
  	
  	
  T2	
   	
  	
  	
  Tm	
   …	
  	
  	
  	
  T1	
   	
  	
  	
  T2	
   	
  	
  Tm	
  

	
  	
  	
  	
  Pn	
  	
  	
  	
  P0	
   	
  	
  	
  Pi	
  

Simulation or experiment data 
MPI 

OpenMP OpenMP OpenMP 

Fig. 6: Hybrid MPI/OpenMP parallelization

a high performance blob detection approach, which can
leverage in situ raw data and find blob-filaments efficiently
in fusion experiments or numerical simulations.

4.1 A hybrid MPI/OpenMP parallelization
The key idea is to exploit many cores in a large cluster
system by running MPI to allocate n processes to process
the data in one or several time frames at the high level,
and by leveraging OpenMP to accelerate the computations
using m threads at the low level. Figure 6 shows our hybrid
MPI/OpenMP parallelization for blob detection. Using this
approach, we can complete our blob detection in a few
milliseconds with in situ evaluation.

In order to achieve blob detection in real time, the goal
is to minimize data movements in the memory and speed
up computation. Ideally, the performance is optimal without
any communication if we can perform the job correctly. The
proposed blob detection algorithm in the previous section
supports embarrassingly parallel since we only need the
initial time frame and the target time frame to do the com-
putation. This is an important difference between our blob
detection method and recently developed methods [18], [19]
in terms of real-time requirement. Furthermore, we explore
many-core processor architectures to speed up the compu-
tation of each MPI task by taking full advantage of multi-
threading in the shared memory. Therefore, our real-time
blob detection approach based on hybrid MPI/OpenMP
parallelization is a natural choice and is expected to provide
the optimal performance for fusion plasma data streams.

A practical interesting issue is how to tune the number
of MPI processes and OpenMP threads for the best perfor-
mance by taking both analysis speed and memory size into
account. As shown in Figure 7, we vary the number of MPI
processes and OpenMP threads but fix the total number to
be 24 for investigating the performance when processing the
same amount of time frames data. A faster analysis speed
is achieved when increasing the number of MPI processes
since more data frames can be processed simultaneously. On
the other hand, the analysis speed remains constant with
a few OpenMP threads and degrades with more OpenMP
threads due to lack of enough computation in one time
frame. However, more OpenMP threads could significantly
reduce the memory demands. Therefore, in this study, we
choose the number of OpenMP threads to be four for each
MPI task, to achieve a good trade off between analysis speed
and memory savings.

4.2 Outline of the implementation
We implement our blob detection algorithm in C with a
hybrid MPI/OpenMP parallelization. Algorithm 4 summa-

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

Total number 24 of MPI × OpenMP

Number of MPI

N
o

rm
a

liz
e

d
 R

u
n

ti
m

e

 

 

Blob Det

Blob Det + Comm

Fig. 7: Investigate the performance of hybrid MPI/OpenMP
parallelization when varying number of MPI processes and
OpenMP threads. The blue triangle denotes only normal-
ized blob detection time. The red star denotes the normal-
ized total time including both blob detection time and initial
communication time for broadcasting the first time frame to
all analysis nodes for normalization.

rizes the proposed blob detection algorithm without con-
sidering OpenMP. Users can specify the regions of interest
by (Rmin, Rmax, Zmin, Zmax), the range of target time
frames by (t start, t end), and the location of the data sets.
However, with in situ evaluation, there is no need to specify
the file location since all data are already in memory. We
use static scheduling to evenly divide the number of time
frames for each MPI task for efficiency. The n MPI processes
are allocated to process one or several time frames and m
OpenMP threads are launched to accelerate the computation
in one time frame. Note that the MPI process is also the
master thread in the runtime environment. At the begin-
ning, the initial time frame data is broadcasted to all MPI
processes so that normalization can be performed with new
coming time frames. Then each MPI process embarrassingly
process the data in each time frame with multithreading
in the shared memory. Only detected blobs information are
maintained and added into local database. Since these local
blobs information are very compact, they can be efficiently
transmitted over internet to remote servers for real-time
analysis by domain scientists.

5 EXPERIMENTS AND RESULTS

In this section we present experimental evaluations of our
blob detection and tracking algorithms, and report the per-
formance of the real-time blob detection under both strong
and weak scaling. Before showing experimental results in
the next section, we briefly introduce our experimental
environment, data sets, and parameter setting in our blob
detection and tracking algorithms. We have tested our im-
plementation on the NERSC’s newest supercomputer Edi-
son, where each compute node has two Intel “Ivy Bridge”
processors (2.4GHz with 12 cores) and 64 GB of memory.
Our base data sets are simulation data sets with 1024 time
frames based on the XGC1 simulation [11] [12] from the
Princeton Plasma Physics Laboratory, which last around



IEEE TRANSACTIONS ON BIG DATA, VOL. XX, NO. X, JUNE 2016 9

Algorithm 4 A real-time blob detection approach

Input:
Rmin, Rmax, Zmin, Zmax: specify region of interest
t start, t end : start and end time frames
FileDir: location where data sets locate

Output:
B: Detected region outliers (blobs)

1: Apply static scheduling to assign equal amount of n
time frames data to each MPI process

2: Broadcast the initial time frame to all MPI processes
3: for t = 1 : n do
4: Process i loads raw data in one frame and computes

normalized density ne(r, z, t) in region of interest
5: Refine the triangular mesh. See Algorithm 1
6: Apply two-phase distribution-based outlier detection

to identify outliers with various criteria
7: Apply CCL-based region outlier detection on a trian-

gular mesh to find blob components. See Algorithm 2
8: A blob is added into B if certain criteria is satisfied
9: end for

2.5 milliseconds. One of our main goals is that we can
control analysis speed by varying the number of processes
to complete the blob detection on the entire data set in a
time close to 2.5 milliseconds. It would indicate that our
algorithm could monitor fusion experiments in real time
(neglecting data transfer latency). If we consider internet
transfer latency in real experiments or numerical simulation,
the system needs at least 1 to 25 milliseconds to transfer one
time frame data depending on size of data, which may give
us more time for data analysis.

Another goal is to validate the effectiveness of the pro-
posed algorithms. In Algorithm 4, we apply various criteria
to identify the blobs. The parameters for blob detection
and tracking in our experiments are given in Table 1. One
criterion we have not mentioned in the previous section is
parameter “minArea”. This parameter is used to decide how
many points a blob should have, which is used to remove
impossibly small blobs. In our experiment, this parameter is
set to three since there are at least three vertices connected
as a 2D component in a triangular mesh. Another criteria
are parameters “maxFrames” and “minFrames”, which are
used to control the length of a blob track and remove noisy
tracks. It is important to note that these parameters need
to be tuned in order to achieve optimal performance in
different fusion experiments or numerical simulations. The
reasons for this uncertainty in the context of blob detection
are from the intrinsic variability and complexity of the blob
structures observed in different experiments [8].

5.1 Performance comparison

We first conduct experiments to compare our method with
recently developed state-of-the-art blob detection methods
in [18], [19]. Since their methods are based on the con-
touring methods and thresholding, we call their methods
the contouring-based methods. We have to point out that
strictly quantitative comparisons are not possible since the
blob itself is not well-defined [8]. Due to this reason, there
are rarely direct comparisons between any new proposed

TABLE 1: Parameters setting for the proposed blob detection
and tracking algorithms on XGC1 simulation data sets

detection criteria tracking criteria
minArea 3 maxAreaChange 25

minRden (dma) 1.2 maxJump 0.04
minAbsden (dmr) 2.05 maxFrames 100

maxAbsMden (d̂xa) 2.75 minFrames 3
minMden (d̂ma) 1.3

minAbsMden (d̂mr) 2.15

method and existing ones in the literature in the domain
of fusion plasma [18], [19], [38], [39], [40], [46], [47], [49].
However, in order to demonstrate that our methods is more
robust than the contouring-based methods, we compare
these two methods in two typical cases to shed light on their
performance in terms of the detection accuracy.

Figure 8 shows the comparison of the blob detection
results between our region outlier detection method and the
contouring-based methods in two different time frames. As
shown in Figures 8a and 8b, we can see that our region
outlier detection method does not miss detecting the blob
at the edge of the regions of interest while the contouring-
based methods fail the detection. The reason is that the
contouring-based methods require the computed contours
are closed, which do not exist at the edge of the regions of in-
terest. In Figures 8c and 8d, we notice that our region outlier
detection method can accurately detect all blobs. However,
the contouring-based methods either yield the blobs with
incorrect areas (much larger or smaller), or misdetect the
wrong area as a blob. This is because that it is hard to
use one single threshold to identify the blobs for various
time frames even in the same experimental data. Our region
outlier detection method does not have such problem since
we use more flexible distribution-based outlier detection.

5.2 More blob detection results
We perform more experiments to comprehensively examine
the blob detection results in five continuous time frames and
four different poloidal planes as shown in Figure 9. As we
can see from the figure, our region outlier detection method
can provide consistently good results in different situations.
In addition, our method does not miss any blobs at the edge
of the regions of interest, as shown in subfigures 9b, 9g, 9c
and 9h. It is interesting to see that large-scale blob structures
are often generated, which could cause substantial plasma
transport [40]. As pointed out in [50], these large-scale
structures are mainly contributed by the low-frequency and
long-wavelength fluctuating components, which may be
responsible for the observations of long-range correlations.
We also noticed that different poloidal planes may display
significant diversity in edge turbulence, even in the same
time frame. We have shown that we are able to effectively
detect the blobs and reveal some interesting results to help
physicists improve their understanding of the characteristic
of blobs and their correlation with other plasma properties.

5.3 Blob tracking results
We investigate the blob tracking results in two different
situations. Figure 10a exhibits a 2D trajectory of a blob.



IEEE TRANSACTIONS ON BIG DATA, VOL. XX, NO. X, JUNE 2016 10

R value

Z
 v

a
lu

e

Blob Detection: time frame 45 and Poloidal plane 1

 

 

2.25 2.26 2.27 2.28 2.29 2.3 2.31
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0

0.5

1

1.5

2

2.5

3

3.5

4

(a) Contouring-based methods (b) Region outlier detection method

R value

Z
 v

a
lu

e

Blob Detection: time frame 87 and Poloidal plane 1

 

 

2.25 2.26 2.27 2.28 2.29 2.3 2.31
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0

0.5

1

1.5

2

2.5

3

3.5

4

(c) Contouring-based methods (d) Region outlier detection method

Fig. 8: Two examples of comparing our region outlier detection method with the Contouring-based methods in the R
(radial) direction and the Z (poloidal) direction. The separatrix position is shown by a white line and the different pink and
blue circles denote blobs.

Again, the trajectory is generated by plotting the location of
the density peak of the detected blobs over five consecutive
time frames. We can see that our blob tracking algorithm
can track two separate blobs simultaneously. The blob size
can grow when they move towards confined plasma in the
right region of separatrix. Figure 10b shows a 3D trajectory
for a detected blob over fifteen consecutive time frames.
In this case, the blob seems to maintain its size for a few
time frames, then gradually decreases, and eventually dis-
appears. Through these interesting results, physicists may
be able to understand the characteristics of blobs better.

5.4 Real-time blob detection under strong scaling
We have illustrated the effectiveness and robustness of
the proposed blob detection and tracking methods. Next,
we perform a set of experiments to demonstrate the per-
formance of our real-time blob detection approach under
strong scaling and weak scaling. We define the speedup
of our parallel implementation on heterogeneous multi-core
architecture as follows:

speedup =
runtime of Blob detection using single core

runtime using P cores

Our most encouraging results are that we can complete
blob detection on the simulation data set described above in

around 2 milliseconds with MPI/OpenMP using 4096 cores
and in 3 milliseconds with MPI using 1024 cores. In Figure
11, we can achieve linear time speedup in blob detection
time under strong scaling. The MPI and the MPI/OpenMP
implementations accomplish 800 and 1200 times speedup
respectively, when the number of processes is scaled to 1024.
Also, we can see that the hybrid MPI/OpenMP implementa-
tion is about two times faster than the MPI implementation
when varying the number of processes from 1 to 512. With
1024 processes, both of them achieve similar performance,
but the MPI/OpenMP one is slightly better. This demon-
strates that we are able to control analysis speed by varying
the number of processes to achieve real-time analysis.

5.5 Real-time blob detection under weak scaling

In this experiment, we evaluate the performance of our
real-time blob detection under weak scaling. We replicate
existing data sets (30GB) in order to obtain adequate ex-
perimental data sets (4.3TB). The basic unit data contains
128 time frames and the size of data increases linearly with
the number of processes. In Figure 12, the blob detection
time remains almost constant under weak scaling, which
indicates that our implementations scale very well to solve
much larger problems. Also, both MPI and MPI/OpenMP



IEEE TRANSACTIONS ON BIG DATA, VOL. XX, NO. X, JUNE 2016 11

(a) Frame 82 and plane 1 (b) Frame 83 and plane 1 (c) Frame 84 and plane 1 (d) Frame 85 and plane 1 (e) Frame 86 and plane 1

(f) Frame 82 and plane 2 (g) Frame 83 and plane 2 (h) Frame 84 and plane 2 (i) Frame 85 and plane 2 (j) Frame 86 and plane 2

(k) Frame 82 and plane 3 (l) Frame 83 and plane 3
(m) Frame 84 and plane
3 (n) Frame 85 and plane 3 (o) Frame 86 and plane 3

(p) Frame 82 and plane 4 (q) Frame 83 and plane 4 (r) Frame 84 and plane 4 (s) Frame 85 and plane 4 (t) Frame 86 and plane 4

Fig. 9: An example of the blob detection in five continuous time frames and four different poloidal planes in the R (radial)
direction and the Z (poloidal) direction. The separatrix position is shown by a white line and the different blue circles
denote blobs.

(a) 2D trajectory for detected blobs

2.26

2.28

2.3

−0.2
−0.1

0
0.1

0.2

144

146

148

150

152

154

156

158

R value

Trajectory of region outlier (blobs)

Z value

T
im

e
 f
ra

m
e

(b) 3D trajectory for detected blobs

Fig. 10: 2D and 3D center trajectories for detected blobs over consecutive time frames. The red solid polygon indicates the
starting times of the blobs tracked while the blue broken polygons indicate subsequent times of the same blobs tracked. The
centers of the moving blobs are linked to show their trajectories of the blob motion. The pink line represents the separatrix.

implementations achieve high parallel efficiency as the
number of processes increases from 1 to 1024.

6 CONCLUSION AND FUTURE WORK

Near real-time extraction of spatio-temporal features in very
large-scale irregular data presents both opportunities and



IEEE TRANSACTIONS ON BIG DATA, VOL. XX, NO. X, JUNE 2016 12

10
0

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

10
1

Blob Detection Runtime: Strong Scaling

Number of processes

R
u
n
ti
m

e
 (

S
e
c
o
n
d
)

 

 

MPI Runtime

MPI/OpenMP Runtime

(a) Time

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

Blob Detection Speedup: Strong Scaling

Number of processes

S
p

e
e

d
u

p
 o

v
e

r 
s
e

q
u

a
ti
a

l

 

 

MPI Speedup

MPI/OpenMP Speedup

(b) Speedup

Fig. 11: Blob detection time and speedup with MPI and MPI/OpenMP varying number of processes under strong scaling

10
0

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5
Blob Detection Runtime: Weak Scaling

Number of processes

R
u

n
ti
m

e
 (

S
e

c
o

n
d

)

 

 

MPI Runtime

MPI/OpenMP Runtime

(a) Time

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1
Blob Detection Efficiency: Weak Scaling

Number of processes

P
a

ra
lle

l 
E

ff
ic

ie
n

c
y

 

 

MPI Efficiency

MPI/OpenMP Efficiency

(b) Speedup

Fig. 12: Blob detection time and speedup with MPI and MPI/OpenMP varying number of processes under weak scaling

challenges responding to extreme scale computing and big
data in many applications. In this paper, we propose, for the
first time, a real-time blob detection and tracking approach
for finding blob-filaments in fusion experiments or numer-
ical simulations. The key idea of the proposed approach is
to break down the overall process into three steps. The first
two steps are based on a distribution-based outlier detection
scheme with various criteria and a fast CCL method to find
blob components. In the third step, an efficient blob tracking
scheme is presented to recover the trajectories of the mo-
tions of blobs. Our hybrid MPI/OpenMP implementations
demonstrate the effectiveness and efficiency of the proposed
approach with a set of fusion plasma simulation data. Our
tests show that we can achieve linear time speedup and
complete blob detection in two or three milliseconds using
a cluster at NERSC.

We are currently working on integrating our blob detec-
tion algorithm into the ICEE system for consuming fusion
plasma data streams where the blob detection function is
used in a central data analysis component and the resulting
detection results are monitored and controlled from portable

devices, such as an iPad. We plan to test the proposed
method in both simulations and real fusion experiments.

ACKNOWLEDGMENTS

The authors would like to thank Scientific Data Manage-
ment Group at LBNL, and our collaborators in PPPL and
ORNL for their contributions to this work. The authors
thank Edmund Novak and Daniel Graham for their valuable
comments to improve the readability of this paper. The
authors would also like to thank the referees for their
valuable comments. This work was supported by the Of-
fice of Advanced Scientific Computing Research, Office of
Science, of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231 and partially supported by NSF
under grants No. CCF 1218349 and ACI SI2-SSE 1440700,
and by DOE under a grant No. DE-FC02-12ER41890. The
blobby plasma turbulence simulation was performed using
resources of the Oak Ridge Leadership Computing Facility,
which is a DOE Office of Science User Facility supported
under Contract DE-AC05-00OR22.



IEEE TRANSACTIONS ON BIG DATA, VOL. XX, NO. X, JUNE 2016 13

REFERENCES

[1] N. Cressie and C. K. Wikle, Statistics for Spatio-Temporal Data.
Wiley, 2011.

[2] K. Wu, R. R. Sinha, C. Jones, S. Ethier, S. Klasky, K.-L. Ma,
A. Shoshani, and M. Winslett, “Finding regions of interest on
toroidal meshes,” Computational Science & Discovery, vol. 4, no. 1,
p. 015003, 2011.

[3] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A
survey,” ACM computing surveys (CSUR), vol. 41, no. 3, p. 15, 2009.

[4] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques,
3rd ed. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2011.

[5] M. Gupta, J. Gao, C. C. Aggarwal, and J. Han, “Outlier detection
for temporal data: A survey,” IEEE Transactions on Knowledge and
Data Engineering, vol. 26, no. 9, pp. 1–1, 2014.

[6] H. Yang, S. Parthasarathy, and S. Mehta, “A generalized frame-
work for mining spatio-temporal patterns in scientific data,” in
Proceedings of the eleventh ACM SIGKDD international conference on
Knowledge discovery in data mining. ACM, 2005, pp. 716–721.

[7] R. Aymar, P. Barabaschi, and Y. Shimomura, “The iter design,”
Plasma Physics and Controlled Fusion, vol. 44, no. 5, p. 519, 2002.

[8] D. DIppolito, J. Myra, and S. Zweben, “Convective transport by in-
termittent blob-filaments: Comparison of theory and experiment,”
Physics of Plasmas (1994-present), vol. 18, no. 6, p. 060501, 2011.

[9] S. Shekhar, C.-T. Lu, and P. Zhang, “A unified approach to de-
tecting spatial outliers,” GeoInformatica, vol. 7, no. 2, pp. 139–166,
2003.

[10] K. Wu, S. Ahern, E. W. Bethel, J. Chen, H. Childs, E. Cormier-
Michel, C. Geddes, J. Gu, H. Hagen, B. Hamann et al., “Fastbit:
interactively searching massive data,” in Journal of Physics: Confer-
ence Series, vol. 180, no. 1. IOP Publishing, 2009, p. 012053.

[11] C. Chang, S. Ku, P. Diamond, Z. Lin, S. Parker, T. Hahm, and
N. Samatova, “Compressed ion temperature gradient turbulence
in diverted tokamak edgea),” Physics of Plasmas (1994-present),
vol. 16, no. 5, p. 056108, 2009.

[12] S. Ku, C. Chang, and P. Diamond, “Full-f gyrokinetic particle
simulation of centrally heated global itg turbulence from magnetic
axis to edge pedestal top in a realistic tokamak geometry,” Nuclear
Fusion, vol. 49, no. 11, p. 115021, 2009.

[13] B. Dong, S. Byna, and K. Wu, “Expediting scientific data analysis
with reorganization of data,” in Cluster Computing (CLUSTER),
2013 IEEE International Conference on. IEEE, Sept 2013, pp. 1–8.

[14] ——, “Sds: A framework for scientific data services,” in Proceedings
of the 8th Parallel Data Storage Workshop, ser. PDSW ’13. ACM,
2013, pp. 27–32.

[15] J. Y. Choi, K. Wu, J. C. Wu, A. Sim, Q. G. Liu, M. Wolf, C. Chang,
and S. Klasky, “Icee: Wide-area in transit data processing frame-
work for near real-time scientific applications,” in 4th SC Workshop
on Petascale (Big) Data Analytics: Challenges and Opportunities in
conjunction with SC13, 2013.

[16] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin,
“Flexible io and integration for scientific codes through the adapt-
able io system (adios),” in Proceedings of the 6th international work-
shop on Challenges of large applications in distributed environments.
ACM, 2008, pp. 15–24.

[17] K. Wu, E. Otoo, and K. Suzuki, “Optimizing two-pass connected-
component labeling algorithms,” Pattern Analysis and Applications,
vol. 12, no. 2, pp. 117–135, 2009.

[18] W. Davis, M. Ko, R. Maqueda, A. Roquemore, F. Scotti, and
S. Zweben, “Fast 2-d camera control, data acquisition, and
database techniques for edge studies on nstx,” Fusion Engineering
and Design, vol. 89, no. 5, pp. 717–720, 2014.

[19] J. Myra, W. Davis, D. D’Ippolito, B. LaBombard, D. Russell, J. Terry,
and S. Zweben, “Edge sheared flows and the dynamics of blob-
filaments,” Nuclear Fusion, vol. 53, no. 7, p. 073013, 2013.

[20] P. Dollár, V. Rabaud, G. Cottrell, and S. Belongie, “Behavior recog-
nition via sparse spatio-temporal features,” in 2005 IEEE Interna-
tional Workshop on Visual Surveillance and Performance Evaluation of
Tracking and Surveillance. IEEE, 2005, pp. 65–72.

[21] J. Winkler, A. Seybert, L. König, S. Pruggnaller, U. Haselmann,
V. Sourjik, M. Weiss, A. S. Frangakis, A. Mogk, and B. Bukau,
“Quantitative and spatio-temporal features of protein aggregation
in escherichia coli and consequences on protein quality control
and cellular ageing,” The EMBO journal, vol. 29, no. 5, pp. 910–
923, 2010.

[22] Q. V. Le, W. Y. Zou, S. Y. Yeung, and A. Y. Ng, “Learning hierarchi-
cal invariant spatio-temporal features for action recognition with
independent subspace analysis,” in Computer Vision and Pattern
Recognition (CVPR), 2011 IEEE Conference on. IEEE, 2011, pp.
3361–3368.

[23] K. Aminian, B. Najafi, C. Büla, P.-F. Leyvraz, and P. Robert,
“Spatio-temporal parameters of gait measured by an ambula-
tory system using miniature gyroscopes,” Journal of biomechanics,
vol. 35, no. 5, pp. 689–699, 2002.

[24] S. Sadik and L. Gruenwald, “Research issues in outlier detection
for data streams,” ACM SIGKDD Explorations Newsletter, vol. 15,
no. 1, pp. 33–40, 2014.

[25] V. J. Hodge and J. Austin, “A survey of outlier detection method-
ologies,” Artificial Intelligence Review, vol. 22, no. 2, pp. 85–126,
2004.

[26] E. M. Knox and R. T. Ng, “Algorithms for mining distancebased
outliers in large datasets,” in Proceedings of the International Confer-
ence on Very Large Data Bases. Citeseer, 1998, pp. 392–403.

[27] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof:
identifying density-based local outliers,” in ACM sigmod record,
vol. 29, no. 2. ACM, 2000, pp. 93–104.

[28] Z. He, X. Xu, and S. Deng, “Discovering cluster-based local out-
liers,” Pattern Recognition Letters, vol. 24, no. 9, pp. 1641–1650, 2003.

[29] S. Subramaniam, T. Palpanas, D. Papadopoulos, V. Kalogeraki,
and D. Gunopulos, “Online outlier detection in sensor data using
non-parametric models,” in Proceedings of the 32nd international
conference on Very large data bases. VLDB Endowment, 2006, pp.
187–198.

[30] D. Pokrajac, A. Lazarevic, and L. J. Latecki, “Incremental local
outlier detection for data streams,” in Computational Intelligence
and Data Mining, 2007. CIDM 2007. IEEE Symposium on. IEEE,
2007, pp. 504–515.

[31] M. Elahi, K. Li, W. Nisar, X. Lv, and H. Wang, “Efficient clustering-
based outlier detection algorithm for dynamic data stream,” in
Fuzzy Systems and Knowledge Discovery, 2008. FSKD’08. Fifth Inter-
national Conference on, vol. 5. IEEE, 2008, pp. 298–304.

[32] F. Angiulli and F. Fassetti, “Detecting distance-based outliers in
streams of data,” in Proceedings of the sixteenth ACM conference on
Conference on information and knowledge management. ACM, 2007,
pp. 811–820.

[33] C. C. Aggarwal, Y. Zhao, and P. S. Yu, “Outlier detection in graph
streams,” in Data Engineering (ICDE), 2011 IEEE 27th International
Conference on. IEEE, 2011, pp. 399–409.

[34] H. Dutta, C. Giannella, K. D. Borne, and H. Kargupta, “Distributed
top-k outlier detection from astronomy catalogs using the demac
system.” in SDM. SIAM, 2007, pp. 473–478.

[35] E. Lozano and E. Acufia, “Parallel algorithms for distance-based
and density-based outliers,” in Data Mining, Fifth IEEE Interna-
tional Conference on. IEEE, 2005, pp. 4–pp.

[36] M. E. Otey, A. Ghoting, and S. Parthasarathy, “Fast distributed
outlier detection in mixed-attribute data sets,” Data Mining and
Knowledge Discovery, vol. 12, no. 2-3, pp. 203–228, 2006.

[37] E. Hung and D. W. Cheung, “Parallel mining of outliers in large
database,” Distributed and Parallel Databases, vol. 12, no. 1, pp. 5–26,
2002.

[38] M. Xu, P. Diamond, G. Tynan, C. Holland, P. Manz, N. Fedorczak,
S. C. Thakur, J. Yu, K. Zhao, J. Dong et al., “Turbulent eddy-
mediated particle, momentum, and vorticity transport in the edge
of hl-2a tokamak plasma,” in 24th IAEA Fusion Energy Conference,
San Diego, 2012.

[39] G. Fuchert, G. Birkenmeier, B. Nold, M. Ramisch, and U. Stroth,
“The influence of plasma edge dynamics on blob properties in the
stellarator tj-k,” Plasma Physics and Controlled Fusion, vol. 55, no. 12,
p. 125002, 2013.

[40] S. Zweben, “Search for coherent structure within tokamak plasma
turbulence,” Physics of Fluids, vol. 28, no. 3, p. 974, 1985.

[41] H. Kong, H. C. Akakin, and S. E. Sarma, “A generalized laplacian
of gaussian filter for blob detection and its applications,” IEEE
transactions on cybernetics, vol. 43, no. 6, pp. 1719–1733, 2013.

[42] I. Laptev and T. Lindeberg, “Space-time interest points,” Interna-
tional Conference on Computer VisionICCV’03, pp. 432–439, 2003.

[43] T. Lindeberg, “Feature detection with automatic scale selection,”
International Journal of Computer Vision, vol. 30, no. 2, pp. 79–116,
1998.

[44] R. T. Collins, “Mean-shift blob tracking through scale space,” in
Computer Vision and Pattern Recognition, 2003. Proceedings. 2003



IEEE TRANSACTIONS ON BIG DATA, VOL. XX, NO. X, JUNE 2016 14

IEEE Computer Society Conference on, vol. 2. IEEE, 2003, pp. II–
234.

[45] L. Vincent and P. Soille, “Watersheds in digital spaces: an efficient
algorithm based on immersion simulations,” IEEE transactions on
pattern analysis and machine intelligence, vol. 13, no. 6, pp. 583–598,
1991.

[46] N. S. Love and C. Kamath, “Image analysis for the identification
of coherent structures in plasma,” Optical Engineering and Applica-
tions, pp. 66 960D–66 960D, 2007.

[47] R. Kube, O. E. Garcia, B. LaBombard, J. Terry, and S. Zweben,
“Blob sizes and velocities in the alcator c-mod scrape-off layer,”
Journal of Nuclear Materials, vol. 438, pp. S505–S508, 2013.

[48] T. M. Chan, “Optimal output-sensitive convex hull algorithms in
two and three dimensions,” Discrete & Computational Geometry,
vol. 16, no. 4, pp. 361–368, 1996.

[49] S. Müller, A. Diallo, A. Fasoli, I. Furno, B. Labit, G. Plyushchev,
M. Podestà, and F. Poli, “Probabilistic analysis of turbulent struc-
tures from two-dimensional plasma imaging,” Physics of Plasmas
(1994-present), vol. 13, no. 10, p. 100701, 2006.

[50] G. Xu, B. Wan, W. Zhang, Q. Yang, L. Wang, and Y. Wen, “Multi-
scale coherent structures in tokamak plasma turbulence,” Physics
of Plasmas (1994-present), vol. 13, no. 10, p. 102509, 2006.

Lingfei Wu is a 6th year Ph.D. candidate in
the computer science department at College
of William and Mary, advised by Dr. Andreas
Stathopoulos. His research interests are in the
areas of high-performance scientific computing,
large-scale machine learning, and big data an-
alytics. In summer 2014 and 2015, Lingfei was
a summer research intern at Lawrence Berke-
ley National Laboratory and IBM T.J.Watson
Research Center, respectively. Before joining
William and Mary, Lingfei received his M.S. from

University of Science and Technology of China (Hefei, 2010), following
his B.E. from Auhui University (Hefei, 2007)

Kesheng (John) Wu is a Senior Computer
Scientist at Lawrence Berkeley National Lab-
oratory. works actively on a number of topics
in data analysis, data management, and high-
performance computing. His recent algorithmic
research work includes bitmap indexing tech-
niques for searching large datasets, statistical
methods for extract features from a variety of
data, and restarting strategies for computing ex-
treme eigenvalues. He authored and coauthored
more than 100 technical publications, nine of

which have more than 100 citations each.

Alex Sim is a Senior Computing Engineer at
Lawrence Berkeley National Laboratory. His cur-
rent R& D activities focus on data mining and
modeling, data analysis methods, distributed
resource management, and high performance
data systems. He authored and coauthored
more than 100 technical publications, and re-
leased a few software packages under open
source license.

Michael Churchill received his PhD in Nu-
clear Science and Engineering from the Mas-
sachusetts Institute of Technology, and his Bach-
elor’s degree in Electrical and Computer Engi-
neering from Brigham Young University. He cur-
rently works as a postdoc under Dr. C.S. Chang
at the Princeton Plasma Physics Laboratory, fo-
cusing on data management and analysis with
the large-scale XGC plasma simulation codes.

Jong Y. Choi is a researcher working in Scien-
tific Data Group, Computer Science and Math-
ematics Division, Oak Ridge National Labora-
tory (ORNL), Oak Ridge, Tennessee, USA. He
earned his Ph.D. degree in Computer Science
at Indiana University Bloomington in 2012 and
his MS degree in Computer Science from New
York University in 2004. His areas of research
interest span data mining and machine learn-
ing algorithms, high-performance data-intensive
computing, parallel and distributed systems for

Cloud and Grid computing.

Andreas Stathopoulos received a bache-
lors degree in Mathematics from University of
Athens, Greece in 1989, and an M.S. and Ph.D.
degrees in Computer Science from Vanderbilt
University, USA in 1991 and 1995 respectively.
In 1995, he obtained an NSF CISE postdoctoral
fellowship to work with Prof. Yousef Saad at the
University of Minnesota, USA. In 1997, he joined
the faculty of Computer Science at the College
of William and Mary, USA, where he currently
holds a full professor position. His research in-

terests span the general area of parallel and high performance scientific
computing. He is an expert on solving eigenvalue problems and has
developed the state-of-the-art eigenvalue software PRIMME.

Choong-Seock Chang is the head of the multi-
institutional multi-disciplinary US SciDAC Center
for Edge Physics Simulation (EPSI), headquar-
tered at Princeton Plasma Physics Laboratory,
Princeton University, awarded by US Depart-
ment of Energy, Office of Fusion Energy Sci-
ence and Office of Advanced Scientific Comput-
ing Research, jointly. He has over 150 publica-
tions in peer reviewed internationally recognized
journals, and has given countless invited talks,
keynote speeches and tutorial lectures at major

scientific conferences.

Scott Klasky is currently a senior research sci-
entist at Oak Ridge National Laboratory, and
head of the end to end task in the scientific
computing group at the National Center Compu-
tational Sciences. He has 20 years of experience
in research and development of middleware for
use in high performance computing, and is a
author/co-author of over 40 papers in the field
of physics and high performance computing. He
received his PhD in physics from the University
of Texas at Austin, and then went on to Syracuse

University, and then the Princeton Plasma Physics Laboratory.


